[1]张锦 方瑜 姜伊娜李晨 武向阳 沈光辉 肖海娟.姜黄素通过调节糖代谢重编程抑制三阴性乳腺癌细胞的恶性表型[J].现代中医药,2023,(06):109-117.[doi:10.13424/j.cnki.mtcm.2023.06.022]
 ZHANG Jin FANG Yu JIANG Yina LI Chen WU Xiangyang SHEN Guanghui XIAO Haijuan.Curcumin Inhibits Malignant Phenotype of Triple Negative Breast Cancer Cells by Regulating Glucose Metabolism Reprogramming[J].Modern Traditional Chinese Medicine,2023,(06):109-117.[doi:10.13424/j.cnki.mtcm.2023.06.022]
点击复制

姜黄素通过调节糖代谢重编程抑制三阴性乳腺癌细胞的恶性表型()
分享到:

《现代中医药》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年06期
页码:
109-117
栏目:
出版日期:
2023-12-08

文章信息/Info

Title:
Curcumin Inhibits Malignant Phenotype of Triple Negative Breast Cancer Cells by Regulating Glucose Metabolism Reprogramming
文章编号:
1672-0571(2023)06-0109-09
作者:
张锦1 方瑜2 姜伊娜2李晨1 武向阳1 沈光辉1 肖海娟1
1.陕西中医药大学附属医院,陕西 咸阳 712000;
2.陕西中医药大学,陕西 咸阳 712046
Author(s):
ZHANG Jin1 FANG Yu2 JIANG Yina2 LI Chen1 WU Xiangyang1 SHEN Guanghui1 XIAO Haijuan1
1.Department of Oncology, Hospital Affiliated to Shaanxi University of Chinese Medicine, Shaanxi Xianyang 712000,China;
2.Department of Diagnostics, Shaanxi University of Chinese Medicine, Shaanxi Xiangyang 712046,China
关键词:
关键词:三阴性乳腺癌姜黄素糖代谢重编程增殖迁移凋亡
Keywords:
Key words:Triple negative breast cancer Curcumin Reprogramming of glucose metabolism Proliferation Migration Apoptosis
分类号:
R271.1
DOI:
10.13424/j.cnki.mtcm.2023.06.022
文献标志码:
A
摘要:
摘 要:目的 探讨姜黄素 (curcumin) 对三阴性乳腺癌(Triple Negative Breast Cancer,TNBC)细胞增殖、迁移和凋亡的影响,并从糖代谢重编程关键靶点的改变角度阐明其作用机制。方法 采用细胞活性检测试剂盒(Cell Counting Kit 8,CCK-8法)和Transwell法检测姜黄素对TNBC细胞MDA-MB-231(MB-231)增殖、迁移和侵袭的影响。流式细胞术和Western blot (WB)检测姜黄素对MB-231细胞凋亡和细胞周期阻滞的影响。实时定量聚合酶链式反应(Real Time-Quantitative Polymerase Chain Reaction,RT-qPCR)和WB法检测姜黄素对糖代谢重编程关键靶点的调控影响。结果 姜黄素剂量依赖性的抑制MB-231细胞的增殖和迁移,显著增加细胞凋亡,并导致S期阻滞,同时也下调了MB-231细胞中糖代谢重编程关键靶点mRNA表达。WB结果显示,姜黄素也下调了抗凋亡蛋白表达(Bcl-2)和糖代谢重编程关键蛋白的表达,增加了促凋亡相关蛋白(Cleaved-Caspase3、Bax)的表达。结论 姜黄素能明显抑制MB-231细胞的增殖和迁移,并促进其凋亡,作用机制可能与下调Bcl-2/Bax蛋白的表达,诱导肿瘤细胞凋亡,下调乳腺癌有氧糖酵解,调节乳腺癌糖代谢重编程有关。
Abstract:
Abstract:Objective To investigate the effects of curcumin on the proliferation, migration and apoptosis of triple negative breast cancer (TNBC) cells, and to elucidate its mechanism from the perspective of changes in key targets of glucose metabolism reprogramming. Methods Cell Counting Kit 8 (CCK-8 method) and Transwell method were used to detect the effects of curcumin on the proliferation, migration, and invasion of TNBC cells MDA-MB-231 (MB-231). Flow cytometry and Western blot (WB) were used to detect the effects of curcumin on apoptosis and cell cycle arrest in MB-231 cells. Real Time Quantitative Polymerase Chain Reaction (RT qPCR) and WB methods were used to detect the regulatory effects of curcumin on key targets of glucose metabolism reprogramming. Results The results showed that curcumin dose-dependently inhibited the proliferation and migration of MB-231 cells, significantly increased cell apoptosis, and led to S-phase arrest. At the same time, it also downregulated the mRNA expression of key targets for glucose metabolism reprogramming in MB-231 cells. The WB results showed that curcumin also downregulated the expression of anti apoptotic protein (Bcl-2) and key proteins for glucose metabolism reprogramming, and increased the expression of pro apoptotic related proteins (Cleared Caspase3, Bax). Conclusion Curcumin can significantly inhibit the proliferation and migration of MB-231 cells, and promote their apoptosis. The mechanism may be related to down-regulation of Bcl-2/Bax protein expression, induction of tumor cell apoptosis, down-regulation of aerobic glycolysis in breast cancer, and regulation of glycometabolism reprogramming in breast cancer.

参考文献/References:

[1]Sung H,Ferlay J,Siegel RL,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA:A Cancer Journal for Clinicians,2021,71(3):209-249.
[2]Peddi PF,Ellis MJ,Ma C.Molecular basis of triple negative breast cancer and implications for therapy[J].International Journal of Breast Cancer,2012,2012:217185.
[3]Wahba HA,El-Hadaad HA.Current approaches in treatment of triple-negative breast cancer[J].Cancer Biology & Medicine,2015,12(2):106-116.
[4]Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation[J].Cell,2011,144(5):646-674.
[5]ONeal J,Clem A,Reynolds L,et al.Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer[J].Breast Cancer Research and Treatment,2016,160(1):29-40.
[6]Wang GN,Xu ZL,Wang CH,et al.Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues[J].Oncology Letters,2013,6(6):1701-1706.
[7]Fu DY,He CL,Wei JL,et al.PGK1 is a potential survival biomarker and invasion promoter by regulating the HIF-1α-mediated epithelial-mesenchymal transition process in breast cancer[J].Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology,Biochemistry,and Pharmacology,2018,51(5):2434-2444.
[8]Giordano A,Tommonaro G.Curcumin and cancer[J].Nutrients,2019,11(10):2376.
[9]刘小平,王劲进,王铭远,等.姜黄素逆转卵巢癌细胞紫杉醇耐药的机制研究[J].湖南师范大学学报(医学版),2021,18(3):109-113.
[10]张凤娟.糖代谢机制在丹参酮ⅡA和姜黄素抑制食管癌细胞增殖的作用研究[D].北京:北京工业大学,2016.
[11]Shen H,Perez RE,Davaadelger B,et al.Two 4N cell-cycle arrests contribute to cisplatin-resistance[J].PLoS One,2013,8(4):e59848.from 86 studies[J].Journal of Cancer Research and Clinical Oncology,2019,145(4):967-999.
[12]Yu M,Chen S,Hong W,et al.Prognostic role of glycolysis for cancer outcome:evidence from 86 studies[J].Journal of cancer research and clinical oncology,2019,145(4):967-999.
[13]Gomez LS,Zancan P,Marcondes MC,et al.Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase[J].Biochimie,2013,95(6):1336-1343.
[14]苗淑涵,高晋生.姜黄素药理作用的研究进展[J].光明中医,2017,32(15):2284-2287.
[15]吴山,戚益铭,胡林峰.姜黄素抗肿瘤作用及机制研究进展[J].生物技术世界,2014,11(7):124-125.
[16]Giridhar KV,Liu MC.Available and emerging molecular markers in the clinical management of breast cancer[J].Expert Review of Molecular Diagnostics,2019,19(10):919-928.
[17]Park H,Chang SK,Kim JY,et al.Risk factors for distant metastasis as a primary site of treatment failure in early-stage breast cancer[J].Chonnam Medical Journal,2014,50(3):96-101.
[18]李新,牛冰,李庆辉,等.姜黄素联合KLF8基因siRNA调控JAK2/STAT3信号通路对乳腺癌细胞生长抑制作用的研究[J].安徽医科大学学报,2019,54(1):69-73.
[19]Ramachandran C,Rodriguez S,Ramachandran R,et al.Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines[J].Anticancer Research,2005,25(5):3293-3302.
[20]Czabotar PE,Lessene G,Strasser A,et al.Control of apoptosis by the BCL-2 protein family:implications for physiology and therapy[J].Nature Reviews Molecular Cell Biology,2014,15(1):49-63.
[21]Zhai DY,Jin CF,Huang ZW,et al.Differential regulation of Bax and Bak by anti-apoptotic Bcl-2 family proteins Bcl-B and Mcl-1[J].The Journal of Biological Chemistry,2008,283(15):9580-9586.
[22]Xin MG,Deng XM.Nicotine inactivation of the proapoptotic function of bax through phosphorylation[J].The Journal of Biological Chemistry,2005,280(11):10781-10789.
[23]Cao G,Minami M,Pei W,et al.Intracellular Bax translocation after transient cerebral ischemia:implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death[J].Journal of Cerebral Blood Flow and Metabolism:Official Journal of the International Society of Cerebral Blood Flow and Metabolism,2001,21(4):321-333.
[24]Fujimura M,Morita-Fujimura Y,Kawase M,et al.Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice[J].The Journal of Neuroscience:the Official Journal of the Society for Neuroscience,1999,19(9):3414-3422.
[25]Oliva A,Rosebrock A,Ferrezuelo F,et al.The cell cycle-regulated genes of Schizosaccharomyces pombe[J].PLoS Biology,2005,3(7):e225.
[26]Varna M,Lehmann-Che J,Turpin E,et al.p53 dependent cell-cycle arrest triggered by chemotherapy in xenografted breast tumors[J].International Journal of Cancer,2009,124(4):991-997.
[27]Du Y,Wei N,Ma RL,et al.A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer[J].Cell Death & Disease,2020,11(9):731.
[28]Xiao Y,Ma D,Yang YS,et al.Comprehensive metabolomics expands precision medicine for triple-negative breast cancer[J].Cell Research,2022,32(5):477-490.
[29]Lai YW,Hsu WJ,Lee WY,et al.Prognostic value of a glycolytic signature and its regulation by Y-box-binding protein 1 in triple-negative breast cancer[J].Cells,2021,10(8):1890.
[30]Wu Q,ba-alawi W,Deblois G,et al.GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer[J].Nature Communications,2020,11:4205.
[31]Coelho RG,Calaa IC,Celestrini DM,et al.Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma[J].Oncotarget,2015,6(30):29375-29387.
[32]Peng F,Li Q,Sun JY,et al.PFKFB3 is involved in breast cancer proliferation,migration,invasion and angiogenesis[J].International Journal of Oncology,2018,52(3):945-954.
[33]Li Z,Yang LN,Zhang S,et al.Valproic acid suppresses breast cancer cell growth through triggering pyruvate kinase M2 isoform mediated Warburg effect[J].Cell Transplantation,2021,30:9636897211027524.
[34]Krzeslak A,Wojcik-Krowiranda K,Forma E,et al.Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers[J].Pathology & Oncology Research,2012,18(3):721-728.

备注/Memo

备注/Memo:
基金项目:陕西中医药大学创新团队建设项目(2019-YL06)
更新日期/Last Update: 2023-11-23