[1]杨杰 彭启伦 郭步伐 丁维俊.半夏-附子药对拮抗冠心病分子机制研究[J].现代中医药,2022,1(02):054-62.[doi:10.13424/j.cnki.mtcm.2022.02.010]
点击复制

半夏-附子药对拮抗冠心病分子机制研究
分享到:

《现代中医药》[ISSN:1006-6977/CN:61-1281/TN]

卷:
1
期数:
2022年02期
页码:
054-62
栏目:
方药纵横
出版日期:
2022-04-16

文章信息/Info

文章编号:
1672-0571(2022)02-0054-09
作者:
杨杰1 彭启伦1 郭步伐1 丁维俊2
1.毕节医学高等专科学校基础医学系,贵州 毕节 551700;
2.成都中医药大学基础医学院,四川 成都 610075
关键词:
关键词:网络药理学半夏-附子药对冠心病成分-靶点-通路分子机制
分类号:
R256.22
DOI:
10.13424/j.cnki.mtcm.2022.02.010
文献标志码:
A
摘要:
摘 要:目的 通过网络药理学与分子对接方法探讨半夏-附子同方配伍拮抗冠心病的分子机制。方法 基于TCMSP、DisGeNET和OMIM等多个数据库查询半夏-附子药对活性成分和冠心病相关靶点。采用STRING数据库构建半夏-附子药对活性成分拮抗冠心病相关靶点PPI网络,运用Cytoscape3.7.1软件构建“半夏-附子药对活性成分-冠心病-靶点-通络”网络,随后使用R语言脚本进行GO和KEGG通路富集分析,最后进行分子对接验证。结果 半夏-附子药对活性成分16个,与半夏-附子同方配伍拮抗冠心病的相关靶点有35个,35个靶点富集在57个GO term上,同时富集在75条KEGG信号转导通路上;KEGG富集P值最显著的信号转导通路为Lipid and atherosclerosis;进一步分析提示了,半夏-附子药对活性成分拮抗冠心病的核心靶点可能为AKT1、FOS、MMP9和PTGS2,其关键有效成分为baicalein、cavidine和deltoin。结论 本研究初步揭示了半夏-附子药对活性成分通过调控Lipid and atherosclerosis信号转导通路而拮抗冠心病,为半夏-附子药对抗冠心病的物质基础及分子机制的进一步研究奠定了理论基础。

参考文献/References:

[1]余婷,肖苏,曹丰,等.《伤寒杂病论》中附子与半夏的配伍运用研究[J].中国中医基础医学杂志,2017,23(11):1626-1627.
[2]李安祥,谢冉,王付.半夏配附子(乌头)辨治杂病临床应用举隅[J].中医药通报,2019,18(3):55-56.
[3]李筠,范欣生,钱大玮,等.附子、半夏同方应用规律文献研究[J].中医杂志,2015,56(22):1961-1964.
[4]李玲,黄川锋,马瑜红,等.附子与半夏预处理对大鼠心肌缺血再灌注损伤细胞凋亡及SOD、MDA的影响[J].中药药理与临床,2013,29(2):97-100.
[5]Yang J,Zhang Y,Li WH,et al.Assessment of the anti-rheumatoid arthritis activity of Gastrodia elata (Tian-ma) and Radix aconitic lateralis preparata (fu-zi) via network pharmacology and untargeted metabolomics analyses[J].International Journal of Rheumatic Diseases,2021,24(3):380-390.
[6]Luo TT,Lu Y,Yan SK,et al.Network pharmacology in research of Chinese medicine formula:methodology,application and prospective[J].Chinese Journal of Integrative Medicine,2020,26(1):72-80.
[7]Zhang GX,Zhang YY,Zhang XX,et al.Different network pharmacology mechanisms of Danshen-based Fangjis in the treatment of stable angina[J].Acta Pharmacologica Sinica,2018,39(6):952-960.
[8]周思思,马增春,梁乾德,等.基于UPLC/Q-TOF-MS分析附子半夏配伍相反的物质基础[J].化学学报,2012,70(3):79-85.
[9]黄超.附子半夏配伍应用生物碱类成分变化规律[D].济南:山东中医药大学,2012:90-91.
[10]杨欣,李亚辉,潘思佳,等.基于PI3K/Akt信号通路筛选附子-半夏抗肿瘤的活性成分及关键靶点[J].中国实验方剂学杂志,2019,25(10):170-179.
[11]刘翠翠,杨晨,杨涛,等.基于网络药理学和分子对接探讨银杏叶治疗高血压病潜在作用机制[J].天然产物研究与开发,2021,33(3):468-478.
[12]马堃,宫林娟,陈燕霞,等.基于网络药理学和分子对接研究补肾促卵方治疗多囊卵巢综合征不孕的分子机制[J].中国中药杂志,2021,46(11):2650-2659.
[13]Huang JQ,Cai CH,Zheng T,et al.Endothelial scaffolding protein ENH (Enigma homolog protein) promotes PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2)-mediated dephosphorylation of AKT1 and ENOS (endothelial NO synthase) promoting vascular remodeling[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2020,40(7):1705-1721.
[14]Lu S,Chen LL,Tang L.Upregulation of AKT1 and downregulation of AKT3 caused by dysregulation of microRNAs contributes to pathogenesis of hemangioma by promoting proliferation of endothelial cells[J].Journal of Cellular Physiology,2019,234(11):21342-21351.
[15]Walker ME,Matthan NR,Goldbaum A,et al.Dietary patterns influence epicardial adipose tissue fatty acid composition and inflammatory gene expression in theOssabaw pig[J].The Journal of Nutritional Biochemistry,2019,70:138-146.
[16]Liu C,Tate T,Batourina E,et al.Pparg promotes differentiation and regulates mitochondrial gene expression in bladder epithelial cells[J].Nature Communications,2019,10:4589.
[17]Majithia AR,Tsuda B,Agostini M,et al.Prospective functional classification of all possible missense variants in PPARG[J].Nature Genetics,2016,48(12):1570-1575.
[18]Li JY,Lu H,Tao F,et al.Meta-analysis of MMP9-562C/T and the risk of coronary heart disease[J].Cardiology,2013,124(1):53-59.
[19]Hu Z,Wang H,Fan GW,et al.Danhong injection mobilizes endothelial progenitor cells to repair vascular endothelium injury via upregulating the expression of Akt,ENOS and MMP-9[J].Phytomedicine,2019,61:152850.
[20]Li X,Wang F,Lan YX,et al.GDF-5 induces epidermal stem cell migration via RhoA-MMP9 signalling[J].Journal of Cellular and Molecular Medicine,2021,25(4):1939-1948.
[21]Huang G,Jiang MP,Wu XR,et al.KGFR and MMP9 expression are correlates with cancer growth in cervical carcinoma[J].Minerva Medica,2021,112(4):524-525.
[22]Nandi SS,Katsurada K,Sharma NM,et al.MMP9 inhibition increases autophagic flux in chronic heart failure[J].American Journal of Physiology.Heart and Circulatory Physiology,2020,319(6):H1414-H1437.
[23]Feng BH,Shen Y,Pastor Hostench X,et al.Integrative analysis of multi-omics data identified EGFR and PTGS2 as key nodes in a gene regulatory network related to immune phenotypes in head and neck cancer[J].Clinical Cancer Research,2020,26(14):3616-3628.
[24]Krber H,Goericke-Pesch S.Expression of PTGS2,PGFS and PTGFR during downregulation and restart of spermatogenesis following GnRH agonist treatment in the dog[J].Cell and Tissue Research,2019,375(2):531-541.
[25]郭步伐,杨杰,彭启伦,等.天麻-附子祛风通络药对抗类风湿性关节炎风寒湿痹症大鼠的干预机制[J].天然产物研究与开发,2020,32(5):831-836.
[26]Katsiki N,Mantzoros C,Mikhailidis DP.Adiponectin,lipids and atherosclerosis[J].Current Opinion in Lipidology,2017,28(4):347-354.
[27]Yu HJ,Rimbert A,Palmer AE,et al.GPR146 deficiency protects against hypercholesterolemia and atherosclerosis[J].Cell,2019,179(6):1276-1288.e14.
[28]Baumer Y,Mehta NN,Dey AK,et al.Cholesterol crystals and atherosclerosis[J].European Heart Journal,2020,41(24):2236-2239.
[29]Chong SJF,Davids MS.Breaking through BCL-2 inhibition in CLL[J].Blood,2020,135(10):709-711.
[30]Kirubhanand C,Selvaraj J,Rekha UV,et al.Molecular docking analysis of Bcl-2 with Phyto-compounds[J].Bioinformation,2020,16(6):468-473.
[31]Yuan Y,Wang YY,Liu X,et al.KPC1 alleviates hypoxia/reoxygenation-induced apoptosis inrat cardiomyocyte cells though BAX degradation[J].Journal of Cellular Physiology,2019,234(12):22921-22934.
[32]Cohen DT,Wales TE,McHenry MW,et al.Site-dependent cysteine lipidation potentiates the activation of proapoptotic BAX[J].Cell Reports,2020,30(10):3229-3239.e6.
[33]Saliques S,Teyssier JR,Vergely C,et al.Smoking and FOS expression from blood leukocyte transcripts in patients with coronary artery disease[J].Atherosclerosis,2011,219(2):931-936.
[34]Yap EL,Pettit NL,Davis CP,et al.Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network[J].Nature,2021,590(7844):115-121.
[35]Parker M,Mohankumar KM,Punchihewa C,et al.C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma[J].Nature,2014,506(7489):451-455.
[36]Zhao J,Tian M,Zhang S,et al.Deamidation shunts RelA from mediating inflammation to aerobic glycolysis[J].Cell Metabolism,2020,31(5):937-955.e7.
[37]Lobb IT,Morin P,Martin K,et al.A role for the autophagic receptor,SQSTM1/p62,in trafficking NF-κB/RelA to nucleolar aggresomes[J].Molecular Cancer Research,2021,19(2):274-287.
[38]Gunawan F,Gentile A,Gauvrit S,et al.Nfatc1 promotes interstitial cell formation during cardiac valve development in zebrafish[J].Circulation Research,2020,126(8):968-984.
[39]Zeng XZ,Zhang YY,Yang Q,et al.Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCγ1-Ca2+-NFATc1 signaling pathway[J].Acta Pharmacologica Sinica,2020,41(2):229-236.
[40]Gu W,Wang ZQ,Sun Z,et al.Role of NFATc1 in the bone-vascular axis calcification paradox[J].Journal of Cardiovascular Pharmacology,2020,75(3):200-207.
[41]Dinesh P,Kalaiselvan S,Sujitha S,et al.miR-506-3p alleviates uncontrolled osteoclastogenesis via repression of RANKL/NFATc1 signaling pathway[J].Journal of Cellular Physiology,2020,235(12):9497-9509.

备注/Memo

备注/Memo:
基金项目:贵州省科技计划(黔科合基础[2019]1003)
更新日期/Last Update: 2022-04-08